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Intro 

This paper provides an overview of approaches taken to the mechanics of augmented 

reality. Augmented reality is defined as applications that combine real and virtual elements in 

real-time, registered in three dimensions. The creation of augmented reality can be broken up 

into three tasks: recognition, tracking, and overlay (Schmalstieg). We will explore and discuss in 

turn algorithms for implementing each of these three tasks.  

Background 

Augmented reality has existed since Ivan Sutherland’s first augmented reality system 

created in 1986 (Schmalstieg). The Milgram Continuum, conceived in the late 80’s by Paul 

Milgram places augmented reality on a continuum between virtual reality in which a user 

experiences an entirely virtual world and the reality of real life. In the middle, in the state of 

mixed reality, lies augmented reality along with augmented virtuality (Trekk). Between 1998 and 

2008 there were 313 papers published about tracking, interaction, calibration, mobile and other 

applications, evaluations, authoring, visualizations, rendering and multimodal augmented reality. 

In particular tracking, techniques were most studied with over 20% of published research 

exploring tracking algorithms (Zhou). Following this, interaction, calibration, and applications 

were the most studied fields with around 14% each (Zhou). This breakup of research illustrates 

the difficulty in recognizing and tracking the real world in order to create augmented reality and 

is where a large portion of algorithm research lies in the field.  

Recognition 

Augmented reality is achieved in three continuously cycling steps: recognition of the 

space and objects within the space, tracking motion of the objects, the space itself, and the 
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observer, and mixing in of augmentation elements (Amin 12). The first step, recognition, can be 

achieved in many ways. While visual data is undoubtedly valuable to augmented reality 

processing, as most augmentation involves the addition of visual elements or processing of visual 

elements, there are other forms of data that can be used to recognize spaces and objects. These 

forms include sonar and other forms of ultrasonic sensing, global positioning system data, 

accelerometer and gyroscope data, and many others, depending on need (Schmalstieg 112). 

There are also different types of visual data to consider, from straightforward pictures to 

structured light systems that register image depth (Schmalstieg 128). 

The methods of recognition of space and objects can be divided into a few different 

categories based on what data they use, how they process it, and how they use the processed 

data. Fiducial marker-based tracking uses predetermined symbols to understand space. Using set 

symbols with very strong characteristics allows for fast decision making about the presence or 

absence of the symbol, especially when the markers are strongly colored as in the case of bitonal 

black-white fiducial markers (Hirzer 1). This method also is helpful for determining camera 

angle, since the size or warping of the marker can indicate distance, oblique angles, or similar 

(Amin 13). Hybrid tracking uses two or more data sources, such as GPS data, accelerometer 

data, or gyroscopic data, to recognize the environment that the user is in and where their camera 

is pointing. With the advent of services like StreetView on Google Maps, which is basically a 

virtual world model tied to GPS values, this data can be simply the final key in situating a user in 

a virtual world model and determining their perspective in order to decide what to augment in the 

user’s field of view (Amin 13). A third way to approach recognition and situation of user 

environments is with recognition of real-world counterparts to 3D models. The programmer 
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creates 3D models of real-world objects before program use. The algorithm attempts to recognize 

lines and build polygons in order to compare its constructed 3D model of what it is perceiving 

with the predetermined model of the object or environment. This approach is very demanding of 

processing power, since it requires dynamic creation of 3D models and comparison of 3D 

models (Amin 13). The fourth category is natural feature tracking. This approach involves 

dynamic creation of models of certain pieces of the user’s environment. These models are stored 

so that these objects can be recognized again later. This recognition model has the potential to be 

highly personalized to each user and to be very flexible with lighting, object orientation, 

occlusion, and other environmental interferences (Amin 13). 

There are countless implementation details to consider in any method of object and 

environment recognition for augmented reality applications. So, consider as a guiding case study 

a technical report written by Martin Hirzer on a fiducial marker recognition system, with some 

detours into other studies for comparison. Hirzer’s algorithm breaks down into five steps: 

choosing edge pixels, detecting edges, line extension, corner creation, and quadrangle building.  

Deciding which pixels constitute an edge of an object is the first step in any visually 

based recognition algorithm. Volume of data can easily slow down this task, which can be solved 

by only analyzing full images every so often and analyzing only a sampling grid of the pixels on 

most frames as well as exploiting image locality by assuming objects are not moving very far 

between frames (Hirzer 5-6). In Hirzer’s case, selection of edge pixels comes down to a 

threshold color differentiation decision on the pixel itself in the context of its neighbor pixels, 

since he is looking for edges on black-white fiducial markers. This decision is easily complicated 

in more complex markers, natural feature tracking and model-based tracking.  
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A different edge pixel determination system, can be found in Piotr Dollar and C. 

Lawrence Zitnick’s structured forest approach to image analysis. Dollar and Zitnick state that 

“[p]atches of edges exhibit well-known forms of local structure, such as straight lines or 

T-junctions” (Dollar 1) and use these known structures to create decision trees. These trees 

branch off based on what structure the patch may best fit, and yield a designation of edge pixel 

or non-edge pixel for the pixel(s) in the center of the patch. This decision tree based algorithm is 

better suited to a natural feature tracking based approach to recognition because of its flexible 

definition of an edge or edge pixel. However, Dollar and Zitnick’s algorithm is not completely 

described by the decision tree model, since “[i]ndividual decision trees exhibit high variance and 

tend to overfit” (Dollar 3). Dollar and Zitnick thus tune accuracy by labeling pixels with the 

cumulative decisions of a virtual forest of decision trees, all diverse enough from each other on 

the images that they use as their samples that the result is very accurate (Dollar 3). 

A more common method of edge pixel selection is the Canny algorithm, which can be 

summed up in the following pseudocode:  

“1. Smooth the image with an appropriate Gaussian filter to reduce desired image details. 

2. Determine gradient magnitude and gradient direction at each pixel. 

3. If the gradient magnitude at a pixel is larger than those at its two neighbors in the 

gradient direction, mark the pixel as an edge. Otherwise, mark the pixel as the 

background. 

4. Remove the weak edges by hysteresis thresholding.” (Ding 1) 

Gaussian filters are commonly used in graphics to blur images and apply other effects, using a 

pixel and its neighbors to contribute to varying degrees to an output pixel’s final shade. A more 
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efficient implementation of a Gaussian blur runs at O(n) time, n being the number of pixels in an 

image, since it samples colors horizontally, n constant time samplings of k pixels averaged in a 

constant time Gaussian function to contribute to each of the n pixels, and then vertically in a 

similar fashion, for a total of 2n applications of the Gaussian function (Rákos 1). These steps are 

constant time comparisons or decisions for each of n pixels, making Canny edge detection an 

O(n) operation on an image with n pixels. After the removal of weak edges, the Canny edge 

detector only returns strongly detected edge pixels or pixels above a certain threshold and 

connected to edge pixels, indicating them as more weakly showing edge pixels. 

Once edge pixels have been decided, Hirzer defines four categories of line detection 

algorithms to choose from: hypothesize-and-test statistically based algorithms, algorithms based 

on gradient magnitude and direction, local contouring of groups of edge pixels, and Hough 

transform based approaches (Hirzer 4). Hirzer opts for a statistically based algorithm because he 

does not want to sacrifice the considerable processing time for a Hough transform based 

algorithm, despite its accuracy. The statistically based algorithm that Hirzer chooses basically 

draws a trend line using the edge pixels and their common orientations, their orientation being 

defined by their situation along a gradient. 

The Hough transform is a particularly interesting algorithm based in linear algebra. It is 

made to fill an accumulator array whose dimensions are x θ-values and y ρ-values within a 

certain range and spaced to a standard difference. The transform fills each cell with “votes” for 

the θ-values and ρ-values indicated by its placement in the array. Votes are counted by which 

edge pixels fall along the imaginary line parameterized by the specified θ-values and ρ-values. 

Θ-values are the angles between the normal to the imaginary line, the normal which passes 
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through the origin, and the x-axis, and ρ-values are the lengths of the sections of the normals 

between the imaginary line and the graph origin. The lines that have the most votes will be 

decided to be real, and the edge pixels that support the existence of that line will be taken out of 

consideration for other lines (Yam-Uicab 1). Below is some pseudocode for implementation of 

the Hough transform: 

“1. Obtain Ib, result of binarizing I. 

2. Quantize parameter space (ρ,θ) into accumulator cells M[ρ,θ],ρ∈[ρmin,ρmax]; 

θ∈[θmin,θmax]. 

3. Initialize all cells to 0. 

 4. For each foreground point (xk,yk) in the thresholded edge image Ib: 

○ For each point θj equal all possible θ-values 

■ Solve for ρ using ρ=xkcosθj+yksinθjρ=xkcosθj+yksinθj 

■ Round ρ to the closest cell value, ρq 

■ Increment M(p, q) if θp results in ρq 

5. Find line candidates where M(i, j) is above a suitable threshold value. 

6. Return lines ρi=xcosθj+ysinθjρi=xcosθj+ysinθj” (Yam-Uicab 1). 

The initialization of the algorithm, i.e. steps 1 to 3, takes some multiple of km steps, where k is 

the number of ρ values being considered and m is the number of θ values being considered. Step 

4 is bounded by the number of edge pixels n, and then by the number of θ values being 

considered m, because of the consideration of all θ values for each edge pixel, making the voting 

part of the algorithm O(mn). The arithmetic steps within are constant time simple operations. 
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Steps 5 and 6 require another iteration through the accumulator matrix, taking another km steps. 

In total the algorithm seems to run at O(km + mn) time. 

Once lines have been identified, through whatever method chosen, they can be extended 

to their full lengths to intersect with others and create corners and full polygons. If they can’t be 

extended on either end, it is assumed that this was a false positive of a line and it is deleted, since 

lines must always intersect with other lines in some fashion in the real world. Hirzer describes a 

process in which the color differentiation surrounding a certain pixel can be tested to see if the 

line should be extended in that direction. A certain allowance is made for extending the line with 

pixels diagonal to the previous end of the line in order to allow for lines with inconsistencies and 

slight curves (Hirzer 11). Once lines have been extended far enough, they will intersect with 

others and create corners. It is necessary to check the orientations of the lines in order to ensure 

that all intersections make sense; no parallel lines should intersect, and a line shouldn’t intersect 

with itself (Hirzer 13). Once valid corners are constructed, they can be connected with lines in 

common, making a quadrangle - a polygon. All models, however complex, are made of 

polygons, and so this process can be scaled up to detect hundreds, thousands, millions of 

polygons, and to identify real-world counterparts to virtual models. 

Tracking 

Once polygon coordinates have been established for the real world, the next step is 

tracking. Tracking refers to a dynamic registration of coordinates in order to track the relative 

movements of real-world objects and the augmented reality system (Schmalstieg). There are 

three main categories of tracking. Sensor-based tracking utilizes magnetic, acoustic, inertial, 

optical and/or mechanical sensors to determine position. The more recently prevalent 
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vision-based tracking utilizes image processing technology to determine positions. Hybrid-based 

tracking uses a combination of sensors and images to track objects positions. For example, 

combining inertial tracking data with vision-based tracking can help to accommodate fast 

movement where vision-based tracking often fails. Over 80% of recent research has been on 

vision-based tracking which is where we will focus our attention. (Zhou) 

Within vision-based tracking, natural feature tracking utilizes image processing 

techniques to find lines and edges as described in Martin Hirzer’s algorithm. In Ulrich 

Neummann and Suyu You’s paper Natural Feature Tracking for Augmented Reality, they 

describe a system for closed-loop motion tracking and demonstrates the advantages of using a 

natural feature based tracking system. While Neuummann and You’s paper also delves into 

methods of identifying natural features, we will focus on their tracking methods which could be 

applied to key points or regions selected by any number of recognition algorithms.  

At the most basic level, tracking the motion between frames requires determining the 

motion between each image. This is done by repeatedly computing the inter-frame motion v  

where and A and B represent the coordinates of key natural features at two close pointsBv = A−1  

in time. This approach assumes a linear or translation motion of each natural feature. However, 

in the case of sets of features or the shape of a region as a whole, there may not be simply a 

translational component and an affine transformation that takes into account rotation and scaling 

may be necessary. This affine warp can be calculated in the same way as the inter-frame motion. 

To calculate the effectiveness of a transformation or the error in the detected transformation, we 

compute region C where C = Av, or the transformed first region. We can then compare this 

transformed  to the actual second region B or . This gives us the motion residualRc Rt  
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 and tracking confidence . If the tracking confidence dropsε = R (x, t), −R (x, t)|| t c ||2
MAX{ R (x,t) , R (x, t) }|| t

2
c

2|| δ = 1
1+ε  

below a certain threshold, image recognition can be re-applied in order to identify better features 

to track and thus improve tracking confidence. This closed-loop system and method of built-in 

error checking can prevent re-computing natural features on every frame improving efficiency.  

Unfortunately calculating still requires inverting a matrix, an operation which isA−1  

. While still polynomial time, this calculation must be performed between every frame in(n )Θ 3  

order to ensure smooth motion tracking in realtime which is a primary reason why visual 

tracking is so computationally demanding.  

Once reliable transformations between frames have been established, it is possible to 

determine which transformations must be established. There are three main transformations used 

in augmented reality. Visual tracking is responsible for establishing two categories: model 

transformation and view transformation. Model transformation is responsible for establishing the 

relationship between moving objects and global world coordinates. For example, a car driving 

across a crosswalk on video. View transformation establishes the crucial relationship between 

eye coordinates or camera coordinates and global world coordinates. By keeping track of where 

the camera is in space, it is possible to keep consistent the location of the global world 

coordinates which allows applications to add virtual objects into the real world and keep their 

motion independent of the motion of the camera. This allows for the final transformation 

perspective transformation which combines these virtual and real-world objects into a single 

output display.  

Overlay 
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Once the real world has been tracked and registered, we must overlay the virtual scene 

onto the real scene. When the virtual scene is projected onto the real scene, there are many 

different types of displays and elements to be generated depending on the type of interaction you 

want for the user. Each one of those elements has to appear natural and blend into the real scene 

as seamlessly as possible; the visual registration has to be clean. This means that depth of field 

and placement has to be taken into account as well as lighting and shadows. The first step in 

displaying the virtual images is to do a projective transformation of the 3D camera coordinates 

that have been tracked and recognized and map them to the 2D device display. The view frustum 

processed by the camera is mapped onto a unit cube and then the z coordinates are dropped. The 

x and y coordinates then are transformed using the screen’s units in the correct aspect ratio and 

displayed. Of course, not everything in augmented and mixed reality is supposed to be blended 

seamlessly into the user’s environment! What fun would that be? A perk of augmented reality is 

that the displays don’t have to be mapped to just the world around you; there are displays that 

can be fixed to the camera’s (the user’s) perspective. 

One of these types of objects that is fixed to the camera is a screen-stabilized element that 

is always in the user’s display. This is useful if you want a menu or a clock or maybe a logo 

constantly in view. Screen-stabilized elements are fixed to the camera, and so are body-stabilized 

elements, but those are not always in view. Body-stabilized elements are fixed to the camera, but 

really just move with the user as he moves. So if you have a 3D avatar in the virtual world, that 

image is a body-stabilized element; the body of the avatar isn’t constantly in view, but when you 

walk around, it follows. Virtual objects mapped onto a user’s real world are called 

world-stabilized elements. For example, if a box was generated to sit on the floor in front of you, 
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it wouldn’t matter if you turned around, walked past the box, looked up or down because the box 

will always stay in the same spot on the floor. Body-stabilized and world-stabilized elements 

don’t have to be rendered unless they are within the view frustum, which costs less for the GPU. 

In order to make the box look realistic and natural, the real and virtual scenes must be registered.  

This visual coherence is achieved by generating depth cues from the camera and 

organizing virtual objects onto the 2D screen to appear as if it blends with the 3D world. An 

important depth cue is the relative size of an object because when something is farther, it looks 

smaller. Similarly, farther objects appear to have be higher up in the view. Shading cues give 

insight into where light sources are depending on how an object is lit and so virtual objects can 

be lit properly and cast shadows. Also, there are occlusions, which is when a closer object 

obscures or covers whatever is behind it. Virtual objects that are generated to be closer to the 

user occlude objects behind them, but if a virtual objects needs to be more distant from the user, 

any object closer than that virtual object will occlude the virtual object. The distances of these 

real objects are generated from depth cues. 

A cohesive environment consisting of the real and virtual will only be convincing if 

occlusions are properly resolved: objects must appear to be where they are meant to be placed. 

Occlusion culling is “the process of removing objects that are hidden by other objects from the 

viewpoint” (Mayer 1). In most practices, occluded objects aren’t rendered, which lessens the 

GPU’s rendering load. We will touch on three different types of occlusion techniques and 

algorithms: Potentially Visible Sets and Occlusion Queries.  

The Potentially Visible Sets register areas seen from the camera that are not within the 

current view frustum, but have potential to be viewed. This process is time consuming and is 
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done before the virtual scene is displayed. The perk is that rendering is much better after the 

Potentially Visible Sets are completed. This technique is mostly very useful if there are no live 

changes to the environment during the user’s interaction. Because this is performed once, before 

the user interaction, if there are dynamic changes to the real world, the display will not adapt.  

Occlusion Queries are gaining popularity and it is common for it to be incorporated into 

graphics hardware. Because this technique is built into the hardware (using depth sensors and 

tracking in the camera), it’s very simple to use in a rendering algorithm because the technique is 

already implemented. For this method a query is made for a real object and its boundary and the 

GPU responds with the amount of pixels needed for the virtual object to be rendered in the 

display. If the object’s pixel amount is very low, then the object doesn’t have to be rendered 

because it is too occluded by a real object. This method allows for using the real scene more in 

the display, allowing for more interactivity now that any real object can occlude a virtual one. 

This process may cause lag because queries are continuously being made each frame to check on 

the boundaries of the real objects. However, the real scene can change and the display and 

rendering will react. 

There are many more algorithms and methods that have been used to handle occlusion 

culling, but fine-tuned versions of occlusion queries seem to be the current and future winner. 

With that bright future of more advanced occlusion culling, there also are tools to use it for! 

Displaying and developing augmented reality programs have never been this popular and 

accessible. 

Tools 
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Many developers are using Unity to power their augmented reality games as they have 

for virtual reality. Since AR is such a hot topic right now, many new SDK are being published 

and released. Some of these include Vuforia, ARToolKit, Google ARCore, Apple ARKit, Maxst, 

Wikitude, DeepAR, EasyAR, Xzimg, and argon.js. Besides smartphones, hardware for 

augmented reality is quite inaccessible due to its high price tag; the current leading AR headset, 

the Magic Leap is currently being sold for about $2,300 and the Microsoft HoloLens is about 

$3,000.  

Applications 

Augmented reality is applicable in countless areas. What first comes to mind are uses like 

Pokemon Go and self driving cars. Pokemon Go is easily pinned as a good use of hybrid 

tracking, and the augmentation is easy to see: a cute little Pikachu hopping around your local 

baseball field, or an Eevee in your front yard. Self driving cars combine hybrid tracking with 

natural feature tracking in order to navigate the real world, avoid hitting objects, buildings, 

people, other cars, identify parking spaces, and control speed. However, augmented reality has 

significant importance outside of the world of video games and convenience. 

Augmented reality has a lot of potential in the realm of making everyday life more 

accessible for disabled people. “A system called ASRAR is created to help a deaf person, which 

shows what the narrator says as a text display to deaf people. System combines augmented 

reality with, automatic speech recognition and TTS technology to help people to communicate 

with deaf persons without use of sign language” (Amin 14). This project allows deaf people to 

operate with ease in any context. It means they are not at the mercy of others’ abilities to use sign 

language or use pen and paper. Another project seeks to improve the experiences of those in 
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wheelchairs while shopping. A model of a store was created where each shelf was indicated with 

a fiducial marker, and RFID scanners were placed on the back of each shelf. A disabled shopper 

would usually not be able to interact with most of the items in the store, but with this system, 

they can hold up their phone or tablet camera to the fiducial marker, the RFID scanner will 

retrieve data on which items are currently on the shelf, and the user will be able to browse 

metadata - read summaries and reviews, browse as an able-bodied shopper would - on the 

available items without having to struggle to reach them (Rashid 1). 

Another project improves the quality of oral surgery by recognizing features of a 

mandible and superimposing medical scan data onto teeth, gums, and jaw. Oral surgeons have 

years of practice and training, but visualizing nerve paths, tooth roots, and areas of infection 

helps them make more precise choices when performing a surgery. This would be a perfect 

application for model based tracking, since each tooth is unique and has ample CT scan imaging 

available. The researchers developed an algorithm to translate the tooth into the 3D model and 

back with informational overlay (Murugesan 1). 

Conclusion 

Computational understanding of our world has incredible potential and infinite 

possibilities. The surface has only been scratched. With the rising capabilities of CPUs and 

GPUs and progressions of versions of these algorithms, augmented reality will make our world 

computationally understandable and accessible for everyone. So now we know how to use it and 

have ideas of what to it for, but will we incorporate headsets into our daily life? Will virtual 

entertainment replace real world interactions? According to critics, it already has.  
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